This table shows the history of HRS data collection efforts, with links to additional information about each data product. For cross-year products, the table shows which years are included in the release. View Table Longitudinal Cohort Sample Design This graphic portrays the HRS sample accrual over time, representing various birth cohorts. View Chart
RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics.
Analysis Of Questionnaire Data With R Pdf Download
Download File: https://8bistcifquare.blogspot.com/?iq=2vKNHJ
Every RNA-seq experimental scenario could potentially have different optimal methods for transcript quantification, normalization, and ultimately differential expression analysis. Moreover, quality control checks should be applied pertinently at different stages of the analysis to ensure both reproducibility and reliability of the results. Our focus is to outline current standards and resources for the bioinformatics analysis of RNA-seq data. We do not aim to provide an exhaustive compilation of resources or software tools nor to indicate one best analysis pipeline. Rather, we aim to provide a commented guideline for RNA-seq data analysis. Figure 1 depicts a generic roadmap for experimental design and analysis using standard Illumina sequencing. We also briefly list several data integration paradigms that have been proposed and comment on their potential and limitations. We finally discuss the opportunities as well as challenges provided by single-cell RNA-seq and long-read technologies when compared to traditional short-read RNA-seq.
A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. a Preprocessing includes experimental design, sequencing design, and quality control steps. b Core analyses include transcriptome profiling, differential gene expression, and functional profiling. c Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: ChIP-seq Chromatin immunoprecipitation sequencing, eQTL Expression quantitative loci, FPKM Fragments per kilobase of exon model per million mapped reads, GSEA Gene set enrichment analysis, PCA Principal component analysis, RPKM Reads per kilobase of exon model per million reads, sQTL Splicing quantitative trait loci, TF Transcription factor, TPM Transcripts per million
A crucial prerequisite for a successful RNA-seq study is that the data generated have the potential to answer the biological questions of interest. This is achieved by first defining a good experimental design, that is, by choosing the library type, sequencing depth and number of replicates appropriate for the biological system under study, and second by planning an adequate execution of the sequencing experiment itself, ensuring that data acquisition does not become contaminated with unnecessary biases. In this section, we discuss both considerations.
The actual analysis of RNA-seq data has as many variations as there are applications of the technology. In this section, we address all of the major analysis steps for a typical RNA-seq experiment, which involve quality control, read alignment with and without a reference genome, obtaining metrics for gene and transcript expression, and approaches for detecting differential gene expression. We also discuss analysis options for applications of RNA-seq involving alternative splicing, fusion transcripts and small RNA expression. Finally, we review useful packages for data visualization.
Read mapping and transcript identification strategies. Three basic strategies for regular RNA-seq analysis. a An annotated genome is available and reads are mapped to the genome with a gapped mapper. Next (novel) transcript discovery and quantification can proceed with or without an annotation file. Novel transcripts are then functionally annotated. b If no novel transcript discovery is needed, reads can be mapped to the reference transcriptome using an ungapped aligner. Transcript identification and quantification can occur simultaneously. c When no genome is available, reads need to be assembled first into contigs or transcripts. For quantification, reads are mapped back to the novel reference transcriptome and further analysis proceeds as in (b) followed by the functional annotation of the novel transcripts as in (a). Representative software that can be used at each analysis step are indicated in bold text. Abbreviations: GFF General Feature Format, GTF gene transfer format, RSEM RNA-Seq by Expectation Maximization
The most common application of RNA-seq is to estimate gene and transcript expression. This application is primarily based on the number of reads that map to each transcript sequence, although there are algorithms such as Sailfish that rely on k-mer counting in reads without the need for mapping [34]. The simplest approach to quantification is to aggregate raw counts of mapped reads using programs such as HTSeq-count [35] or featureCounts [36]. This gene-level (rather than transcript-level) quantification approach utilizes a gene transfer format (GTF) file [37] containing the genome coordinates of exons and genes, and often discard multireads. Raw read counts alone are not sufficient to compare expression levels among samples, as these values are affected by factors such as transcript length, total number of reads, and sequencing biases. The measure RPKM (reads per kilobase of exon model per million reads) [1] is a within-sample normalization method that will remove the feature-length and library-size effects. This measure and its subsequent derivatives FPKM (fragments per kilobase of exon model per million mapped reads), a within-sample normalized transcript expression measure analogous to RPKs, and TPM (transcripts per million) are the most frequently reported RNA-seq gene expression values. It should be noted that RPKM and FPKM are equivalent for SE reads and that FPKM can be converted into TPM using a simple formula [38]. The dichotomy of within-sample and between-sample comparisons has led to a lot of confusion in the literature. Correcting for gene length is not necessary when comparing changes in gene expression within the same gene across samples, but it is necessary for correctly ranking gene expression levels within the sample to account for the fact that longer genes accumulate more reads. Furthermore, programs such as Cufflinks that estimate gene length from the data can find significant differences in gene length between samples that cannot be ignored. TPMs, which effectively normalize for the differences in composition of the transcripts in the denominator rather than simply dividing by the number of reads in the library, are considered more comparable between samples of different origins and composition but can still suffer some biases. These must be addressed with normalization techniques such as TMM.
Differential expression analysis (Fig. 1b) requires that gene expression values should be compared among samples. RPKM, FPKM, and TPM normalize away the most important factor for comparing samples, which is sequencing depth, whether directly or by accounting for the number of transcripts, which can differ significantly between samples. These approaches rely on normalizing methods that are based on total or effective counts, and tend to perform poorly when samples have heterogeneous transcript distributions, that is, when highly and differentially expressed features can skew the count distribution [45, 46]. Normalization methods that take this into account are TMM [47], DESeq [48], PoissonSeq [49] and UpperQuartile [45], which ignore highly variable and/or highly expressed features. Additional factors that interfere with intra-sample comparisons include changes in transcript length across samples or conditions [50], positional biases in coverage along the transcript (which are accounted for in Cufflinks), average fragment size [43], and the GC contents of genes (corrected in the EDAseq package [21]). The NOISeq R package [20] contains a wide variety of diagnostic plots to identify sources of biases in RNA-seq data and to apply appropriate normalization procedures in each case. Finally, despite these sample-specific normalization methods, batch effects may still be present in the data. These effects can be minimized by appropriate experimental design [51] or, alternatively, removed by batch-correction methods such as COMBAT [52] or ARSyN [20, 53]. These approaches, although initially developed for microarray data, have been shown to work well with normalized RNA-seq data (STATegra project, unpublished).
As RNA-seq quantification is based on read counts that are absolutely or probabilistically assigned to transcripts, the first approaches to compute differential expression used discrete probability distributions, such as the Poisson or negative binomial [48, 54]. The negative binomial distribution (also known as the gamma-Poisson distribution) is a generalization of the Poisson distribution, allowing for additional variance (called overdispersion) beyond the variance expected from randomly sampling from a pool of molecules that are characteristic of RNA-seq data. However, the use of discrete distributions is not required for accurate analysis of differential expression as long as the sampling variance of small read counts is taken into account (most important for experiments with small numbers of replicates). Methods for transforming normalized counts of RNA-seq reads while learning the variance structure of the data have been shown to perform well in comparison to the discrete distribution approaches described above [55, 56]. Moreover, after extensive normalization (including TMM and batch removal), the data might have lost their discrete nature and be more akin to a continuous distribution.
2ff7e9595c
Comments